After introducing the code to calculate the covariance
delTh=(delSr-delSl)/odoB;
delS=(delSr+delSl)/2;
nablapf=[1 0 -delS*sin(poseIn(3)+delTh/2); 0 1 delS*cos(poseIn(3)+delTh/2); 0 0 1];
nablau=[(1/2)*cos(poseIn(3)+delTh/2)-delS/(2*odoB)*sin(poseIn(3)+delTh/2) (1/2)*cos(poseIn(3)+delTh/2)+(delS/(2*odoB))*sin(poseIn(3)+delTh/2);
(1/2)*sin(poseIn(3)+delTh/2)+delS/(2*odoB)*cos(poseIn(3)+delTh/2) (1/2)*sin(poseIn(3)+delTh/2)-delS/(2*odoB)*cos(poseIn(3)+delTh/2); 1/odoB -1/odoB];
sigmaU=[kR*abs(delS) 0;
0 kL*abs(delS)];
covOut1 =nablapf*covIn*nablapf';
covOut2 =nablau*sigmaU*nablau';
covOut =covOut1+covOut2;
The following figures were obtained:
- for a linear path:
- for a circular path:
- for a square path:
No comments:
Post a Comment