Wednesday, March 2, 2011

Exercise 8, problem 1.2

After introducing the code to calculate the covariance

delTh=(delSr-delSl)/odoB;
delS=(delSr+delSl)/2;
nablapf=[1 0 -delS*sin(poseIn(3)+delTh/2); 0 1 delS*cos(poseIn(3)+delTh/2); 0 0 1];

nablau=[(1/2)*cos(poseIn(3)+delTh/2)-delS/(2*odoB)*sin(poseIn(3)+delTh/2) (1/2)*cos(poseIn(3)+delTh/2)+(delS/(2*odoB))*sin(poseIn(3)+delTh/2);
        (1/2)*sin(poseIn(3)+delTh/2)+delS/(2*odoB)*cos(poseIn(3)+delTh/2) (1/2)*sin(poseIn(3)+delTh/2)-delS/(2*odoB)*cos(poseIn(3)+delTh/2);          1/odoB                                                                       -1/odoB];

sigmaU=[kR*abs(delS)    0;
            0       kL*abs(delS)];

covOut1 =nablapf*covIn*nablapf';
covOut2 =nablau*sigmaU*nablau';
covOut  =covOut1+covOut2;


The following figures were obtained:


- for a linear path:


 - for a circular path:
 - for a square path:

No comments:

Post a Comment